Lab Experiment # 2

Operating the X-ray Control Console

Purpose

This lab exercise is designed to demonstrate how to convert the time of exposure to and from milliseconds and how to set a technique on an x-ray console.

Learning Objectives

After completing this lab, you should be able to:

- 1. Use the laboratory equipment properly.
- 2. Set up the control console correctly.
- 3. Function effectively in group work.
- 4. Perform the experiment independently.
- 5. Evaluate the effect of seconds and milliseconds on the exposure
- 6. Convert the exposure time from seconds to milliseconds.
- 7. Calculate the appropriate milliseconds to maintain image density.
- 8. Predict the effect of the change in seconds or milliseconds on image quality

Materials Needed

High-frequency, digital control console

Pre-Lab Discussion

Units of Exposure Time

The exposure timers in use today vary with each x-ray machine. Most machines use seconds or milliseconds. Therefore, radiographers must be able to calculate and set the exposure time on the control console using seconds and milliseconds.

Seconds (s)	Milliseconds (ms)
1.0	1000
0.8	800
0.75	750
0.667	667
0.6	600
0.5	500
0.4	400
0.333	333
0.25	250
0.2	200
0.167	167
0.1	100
0.05	50
0.017	17
0.008	* 8
0.004	4
0.002	2
0.001	** 1

Relationship of Seconds to Milliseconds

* Shortest exposure time possible when using a *single-phase* imaging system

** Shortest exposure time possible when using a *triple-phase* or *high-frequency* imaging system

Millisecond Conversion

To change seconds to milliseconds – multiply by 1,000

$$sec x 1,000 = ms$$

Example:

To convert 3 seconds to milliseconds:

 $3 \sec \times 1,000 = 3,000 \, \text{ms}$

Convert 0.04 seconds to milliseconds:

To change milliseconds to seconds – divide by 1,000

$$\frac{\mathrm{ms}}{\mathrm{1,000}} = \mathrm{sec}$$

Example:

To convert 250 milliseconds to seconds:

 $\frac{250 \text{ ms}}{1,000} = 0.250 \text{ sec}$

Convert 800 milliseconds to seconds:

Illustrated Thought Process

Here is a simple method for remembering the direction the decimal point must move.

To convert <i>seconds</i> to	o <i>milliseconds</i> , move	the decin	nal point three	places to the RIC	GHT.
Ex.	0.500 seconds	=	500 millisecon	nds	
A. Write the followin	g visual aid.			s ← 3 →	ms
B. Place the old time	above the appropriate	e unit of	measurement.	0.5 s ← 3 →	ms
D. Move the decimal of the arrow and p	point three (3) places place the converted tin			0.5 s ← 3 →	500 ms
To convert <i>milliseconds</i> to <i>seconds</i> , move the decimal point three places to the LEFT . Ex. 660 milliseconds = 0.660 seconds					
A. Write the visual ai				s	ms
B. Place the old time	above the appropriate	e unit of 1	measurement.	s ← 3→	660 ms
C. Move the decimal of the arrow and pl	point three (3) places lace the converted tim		the new unit.).660 s ← 3→	660 ms

Practice Drill – Illustrated Thought Process

1. A radiographic exposure requires 0.12 seconds. What millisecond-equivalent timer setting should you use? [_____] $s \leftarrow 3 \rightarrow ms$ 2. A radiographic exposure requires 300 milliseconds. What decimal-equivalent timer setting should you use? [_____] $s \leftarrow 3 \rightarrow ms$ 3. A radiographic exposure requires 0.044 seconds. What <u>millisecond-equivalent</u> timer setting should you use? [_____] $s \leftarrow 3 \rightarrow ms$ 4. A radiographic exposure requires 9 milliseconds. What decimal-equivalent timer setting should you use? [_____] $s \longleftarrow 3 \longrightarrow ms$

Setting the Control Console

Lab Worksheet

- 1. What is the HIGHEST kVp value that can be set on your console?
- 2. What is the LOWEST kVp value that can be set on your console?
- 3. What is the HIGHEST mA station that can be set on your console?
- 4. What is the LOWEST mA station that can be set on your console?
- 5. What is the HIGHEST mA station that can be set on your console when using the small focal spot (small filament)?
- 6. What is the LOWEST mA station that can be set on your console when using the small focal spot (small filament)?
- 7. What is the HIGHEST mA station that can be set on your console when using the large focal spot (large filament)?
- 8. What is the HIGHEST mA station that can be set on your console when using the large focal spot (large filament)?

- 9. What is the LOWEST mA station that can be set on your console when using the large focal spot (large filament)?
- 10. What mA and time combinations on your console would generate 2 mAs when using small focal spot?

mA	Time (s)

11. What mA and time combinations on your console would generate **16** mAs when using small focal spot?

mA	Time (s)

12. What mA and time combinations on your console would generate 2 mAs when using small focal spot?

mA	Time (s)

- 2. *List* four *exposure factors* the radiographer sets on the operating console.
 - A. ______ B. _____ C. _____ D. _____
- 3A. *Explain* the effect of changing the mode of operation from <u>2-button mode</u> to <u>3-button mode</u>.

3B. Give an example of when the <u>2-button</u> mode of operation should be used.

3C. Give an example of when the <u>3-button</u> mode of operation should be used.

4A. *Explain* the effect of changing the focal spot size from <u>small</u> to <u>large</u> focal spot.

4B. Give an example of when the **small** focal spot should be used.

4C. Give an example of when the <u>large</u> focal spot should be used.